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Fully factorized
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The Alphabet Soup of probabilistic models
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NaiveBayes AndOrGraphs PDGs
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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

a unifying framework for tractable models
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Why tractable inference?
or expressiveness vs tractability
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Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling
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Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that a patient with BMI of 25
is experiencing fever?
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⇒ fitting a predictive model!
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Why probabilistic inference?

q1: What is the probability that a patient with BMI of 25
is experiencing fever?

q2: At what age is most likely to show any symptom of
COVID19?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ?
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Why probabilistic inference?

q1: What is the probability that a patient with BMI of 25
is experiencing fever?

X = {Age,BMI, Sym1, Sym2, . . . , SymN}

q1(m) = pm(BMI = 25, Symfever = 1)

© fineartamerica.com

9/112

fineartamerica.com


Why probabilistic inference?

q1: What is the probability that a patient with BMI of 25
is experiencing fever?

X = {Age,BMI, Sym1, Sym2, . . . , SymN}

q1(m) = pm(BMI = 25, Symfever = 1)

⇒ marginals
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Why probabilistic inference?

q2: At what age is most likely to show any symptom of
COVID19?

X = {Age,BMI, Sym1, Sym2, . . . , SymN}

q2(m) = argmaxa pm(Age = a ∧
∨

i∈COVID19 Symi)
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Why probabilistic inference?

q2: At what age is most likely to show any symptom of
COVID19?

X = {Age,BMI, Sym1, Sym2, . . . , SymN}

q2(m) = argmaxa pm(Age = a ∧
∨

i∈COVID19 Symi)

⇒ marginals + MAP + logical events © fineartamerica.com
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≈
pm(X)

...

q1(m)?

q2(m)?

qk(m)?

(iterative) probabilistic inference
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≈
pm(X)

...

q1(m)?

q2(m)?

qk(m)?

e.g., exploratory data analysis
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

⇒ Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).
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Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]
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Why exact inference?
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1. No need for approximations when we can be exact
⇒ do we lose some expressiveness?

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

13/112



Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees
⇒ sometimes they do, e.g., [Dechter et al. 2007]

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]
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Stay tuned for...

Next: 1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified
framework for tractable probabilistic modeling
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Q:M

tractable bands
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Complete evidence (EVI)

q3: What is the probability that a 33-years old patient
with BMI of 25 is experiencing only fever?
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X = {Age,BMI, Symfever,Sym2, . . . , SymN}

q3(m) = pm(X = {33, 25.00, 1, 0, . . . , 0})
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Complete evidence (EVI)

q3: What is the probability that a 33-years old patient
with BMI of 25 is experiencing only fever?

X = {Age,BMI, Symfever,Sym2, . . . , SymN}

q3(m) = pm(X = {33, 25.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

© fineartamerica.com
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Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 17/112



Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 18/112



Q:M
GANs

EVI

tractable bands
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Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 20/112



Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “tricky” [Alemi et al. 2017; Dai

et al. 2019; Ghosh et al. 2019]

21/112
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Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

many neural variants
NADE [Larochelle et al. 2011],
MADE [Germain et al. 2015]
PixelCNN [Salimans et al. 2017],
PixelRNN [Oord et al. 2016]

X̄1 X̄2 X̄3 X̄4

. . . . . . . . . . . .

X1 X2 X3 X4

23/112



Marginal queries (MAR)

q1: What is the probability that a 33-years old patient
with BMI of 25 is experiencing only fever?
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Marginal queries (MAR)

q1: What is the probability that a 33-years old patient
with BMI of 25 is experiencing only fever?

q1(m) = pm(BMI = 25.0, Symfever = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E
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Marginal queries (MAR)

q1: What is the probability that a 33-years old patient
with BMI of 25 is experiencing only fever?

q1(m) = pm(BMI = 25.0, Symfever = 1)

General: pm(e) =
∫
pm(e,H) dH

and if you can answer MAR queries,
then you can also do conditional queries (CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com
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Tractable MAR : scene understanding

Fast and exact marginalization over unseen or “do not care” parts in the scene
Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 25/112



Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

X̄1 X̄2 X̄3 X̄4

. . . . . . . . . . . .

X1 X2 X3 X4
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Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

... but we need to fix a variable ordering
⇒ only some MAR queries are tractable

for one ordering

X̄1 X̄2 X̄3 X̄4

. . . . . . . . . . . .

X1 X2 X3 X4

27/112



Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

Z

X

f−1f
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Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

MAR is generally intractable
⇒ unless f is a “trivial” bijection

Z

X

f−1f

29/112
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Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5

31/112



Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-complete
⇒ [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ [Dagum et al. 1993; Roth 1996]

32/112



Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w), which is linear for fixed widthw
[Dechter 1998; Koller et al. 2009]. ⇒ what about bounding the treewidth by design?

33/112



Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

34/112



Tree distributions

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 35/112
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What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 37/112



Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1 ) · p1(X|Z = 1 )

+ p(Z = 2 ) · p2(X|Z = 2 )

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

38/112



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 39/112



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) Ability to represent rich and effective classes of
functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 39/112



How expressive efficient are mixture?
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How expressive efficient are mixture?
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How expressive efficient are mixture?

⇒ stack mixtures like in deep generative models
40/112
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?

q5(m) =

argmaxSym pm(Sym1, Sym2, . . . | Age=33,BMI=25)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?

q5(m) =

argmaxSym pm(Sym1, Sym2, . . . | Age=33,BMI=25)

General: argmaxq pm(q | e) whereQ ∪ E = X
© fineartamerica.com
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e)
© fineartamerica.com

42/112

fineartamerica.com


MAP inference : image inpainting
7.3 Face Image Completion
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Figure 7.3: Examples of face image reconstructions, left half is covered.
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Predicting arbitrary patches
given a singlemodel
without the need of retraining.

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra et al., “Image classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 43/112
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?

q6(m) =

argmaxSym pm(Sym1,Sym2, . . . | BMI=25)
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?

q6(m) =

argmaxSym pm(Sym1,Sym2, . . . | BMI=25)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of symptoms is most likely for
33-years old patients with BMI of 25?

q6(m) =

argmaxSym pm(Sym1,Sym2, . . . | BMI=25)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]

© fineartamerica.com
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Advanced queries

q2: At what age is most likely to show any symptom of
COVID19?

© fineartamerica.com
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Advanced queries

q2: At what age is most likely to show any symptom of
COVID19?

q2(m) = argmaxa pm(Age =
a ∧

∨
i∈COVID19 Symi)

⇒ marginals + MAP + logical events

© fineartamerica.com
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Advanced queries

q2: At what age is most likely to show any symptom of
COVID19?

q7: What is the probability of seeing more COVID19
symptoms at MPI-IS than University of Tuebingen?

© fineartamerica.com
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Advanced queries

q2: At what age is most likely to show any symptom of
COVID19?

q7: What is the probability of seeing more COVID19
symptoms at MPI-IS than University of Tuebingen?

⇒ counts + group comparison

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 47/112
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Advanced queries

q2: At what age is most likely to show any symptom of
COVID19?

q7: What is the probability of seeing more COVID19
symptoms at MPI-IS than University of Tuebingen?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019b] © fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 47/112
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

50/112
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I
I I

tractable bands
51/112



m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

52/112



m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
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and tractable ones are not very expressive…
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X

probabilistic circuits are at the “sweet spot”
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Probabilistic Circuits



Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

57/112



Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

57/112



Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

⇒ by constraining the graph we can make inference tractable…

57/112



Stay tuned for...

Next: 1. What are the building blocks of probabilistic circuits?
⇒ How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How can probabilistic circuits be learned?

58/112



Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable
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Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable
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Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

59/112



Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

59/112



Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
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Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
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Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3
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1.0

1.5
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2.5

3.0 ×

0.8

X1
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X2

0.9

X3

⇒ feedforward evaluation
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Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
60/112



Mixtures as sum nodes
Enhance expressiveness

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…
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Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions
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Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency

61/112



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1
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Recursive semantics of probabilistic circuits
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×
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Recursive semantics of probabilistic circuits

X1 X1 X1
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability 64/112



Which structural constraints
to ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 66/112



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 67/112



Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx
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Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3
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X4

1.0

X3

.77
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Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAR : Robotics

Pixels for scenes and abstractions for maps
decompose along circuit structures.

Fast and exact marginalization over unseen
or “do not care” scene and map parts for
hierarchical planning robot executions

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016
Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning
in large-scale environments”, 2017
Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”,
2018 70/112



Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

argmax
q

p(q | e)
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Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸=
∑
z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]
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Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 73/112



Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxiwipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex),max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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max max
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves
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MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 75/112



Determinism + decomposability = tractable MMAP

Analogously, we could can also do a MMAP query:

argmax
q

∑
z

p(q, z | e)
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Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑
z

p(q, z | e)

we still have latent variables to marginalize…

77/112



Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X3

×

X1 X3

X2

×

×

X1 X2

×

X1 X2

X3

×

non structured decomposable circuit
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structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [Choi et al. 2015a]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019c]
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ADV inference : expected predictions

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 80/112
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ADV inference : expected predictions

Common, practical solution: imputation schemes (e.g., mean, median, MICE,…)
⇒ strong independence assumptions…

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 80/112



ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

E
xm∼p(xm|xo)

[
fk(xm,xo)

]

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 81/112



ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

E
xm∼p(xm|xo)

[
fk(xm,xo)

]
Closed form k-th moments for f and p as structured decomposable circuits sharing the
same v-tree

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 81/112



ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

E
xm∼p(xm|xo)

[
fk(xm,xo)

]
Closed form k-th moments for f and p as structured decomposable circuits sharing the
same v-tree ⇒ classifiers with non-linearities (e.g., sigmoids) need approximations

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 81/112



ADV inference : expected predictions

Which out-of-the-box regression and classification models can we turn into structured
decomposable circuits for a give v-tree?

ridge regression, logistic regression,…

decision and regression trees…

random forests, gradient boosted trees (xgboost)

regression and logistic circuits [Liang et al. 2019]

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 82/112



ADV inference : expected predictions

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 83/112



ADV inference : expected predictions

Expected predictions enable reasoning about behavior of predictive models.

E.g., reasoning about “Yearly health insurance costs of patient” with a regressor model
on the insurance dataset

q1: What is the difference of costs between smokers and non-smokers?

E
x∼p(·|Smoker)

[f(x)] − E
x∼p(·|¬Smoker)

[f(x)] = 22, 614

q2: is my model biased between female and male patients?

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 84/112



ADV inference : expected predictions

q3: is my model biased between female and male patients?

E
x∼p(·|Male)

[f(x)] − E
x∼p(·|Female)

[f(x)] = 961

q4: What is the average cost for female (F) smokers (S) with one child (C) in the South East
(SE) and its variance?

E
x∼p(·|F,S,C,SE)

[f(x)] = 30, 974 STD
x∼p(·|F,S,C,SE)

[f(x)] = 11, 222

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 85/112



≈
pm(Y | X)

...

q1(m)?

q2(m)?

qk(m)?

exploratory predictive analysis

86/112
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Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable

smooth

deterministic

circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B
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Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges [Rooshenas et al. 2014]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 90/112



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]
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Cutset Networks (CNets)

CNets
[Rahman et al. 2014] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014
Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 92/112



Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014a] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 93/112



AndOrGraphs

AndOrGarphs
[Dechter et al. 2007] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Dechter et al., “AND/OR search spaces for graphical models”, 2007
Marinescu et al., “Best-first AND/OR search for 0/1 integer programming”, 2007 94/112
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more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 96/112



How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81
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Hybrid intractable + tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

⇒ decomposing a joint ELBO: better lower-bounds than a single VAE
⇒ more expressive efficient and less data hungry

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 98/112



Learning Probabilistic Circuits



Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ
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Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

Learning a circuit C from dataD can therefore involve learning the graph
(structure) and/or its parameters
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

…end of Learning section!
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

wait but…

SGD is slow to converge…can we do better? Yes, EM!

Are structural properties beneficial? Yes, determinism brings closed-form
parameter learning!

Can we learn their structure? Yes! Tons of algorithmic variants…
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Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and leaf-parameters and perform posterior
inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) [Jaini et al. 2016; Rashwan et al. 2016]

Collapsed variational inference algorithm [Zhao et al. 2016b]

Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]
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Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019a] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

deterministic
convex-opt MLE [Liang et al. 2019]
non-deterministic
EM [Rashwan et al. 2018]
SGD [Gens et al. 2012; Sharir et al. 2016]
[Peharz et al. 2019a]

greedy
top-down [Shao et al. 2019]
hill climbing [Rooshenas et al. 2016]
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Conclusions



Q:M
GANs

VAEs

Flows

Trees

Mixtures

Factorized

EVI MAR CON MAP MMAP ADV

I
I
I
I I

takeaway #1: tractability is a spectrum
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more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

takeaway #2: you can be both tractable and expressive
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×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning
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Challenge #1
hybridizing tractable and intractable models

Hybridize probabilistic inference:
tractable models inside intractable loops
and intractable small boxes glued by tractable inference!
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Challenge #2
scaling tractable learning

Learn tractable models
onmillions of datapoints
and thousands of features
in tractable time!
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Challenge #3
advanced and automated reasoning

Move beyond single probabilistic queries
towards fully automated reasoning!
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Readings

Probabilistic circuits: Representation and Learning
starai.cs.ucla.edu/papers/LecNoAAAI20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

Slides for this tutorial
starai.cs.ucla.edu/slides/AAAI20.pdf
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Code

Juice.jl advanced logical+probabilistic inference with circuits in Julia
github.com/Juice-jl/ProbabilisticCircuits.jl

SumProductNetworks.jl SPN routines in Julia
github.com/trappmartin/SumProductNetworks.jl
SPFlow easy and extensible python library for SPNs
github.com/SPFlow/SPFlow
Libra several structure learning algorithms in OCaml
libra.cs.uoregon.edu

More refs ⇒ github.com/arranger1044/awesome-spn
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